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Abstract. The oscillator singular supersymmetric partners are studied in detail, and their
relationship with the equivalent problem of an oscillator plus an infinite barrier is clearly
established. Interesting potentials, with possible applications to different physical models, appear
as a bonus.

1. Introduction

Since the beginning of quantum mechanics, there has been a permanent interest in
establishing connections between different quantum systems. One of the main reasons
is that as only a few problems are known to be analytically solvable, the existence of such
connections would allow us to widen their applicability range. In this respect, we have the
very useful factorization technique, introduced by Schrödinger in the early days of quantum
mechanics, and used by himself to solve the harmonic oscillator, the hydrogen atom, and
the Kepler motion in a hypersphere [1]. It is worth mentioning that, although in a different
context, the basic ideas can be traced back to Darboux [2] and what it is now called the
Darboux transformation. Using these methods, Infeld and Hull presented an exhaustive
classification of the one-dimensional factorizable potentials [3].

In the 1980s the topic of factorization received renewed stimulus owing to the
introduction by Witten of supersymmetry in the context of quantum mechanics [4]. Later
on, Mielnik extended the factorization technique and proved that the class of possible
supersymmetric potentials is wider than was initially supposed [5]. The work of different
authors clarified the links between the ideas mentioned above: Darboux transformation,
factorization and supersymmetry [6, 7]. These algebraic methods coming from factorization
were applied to different interesting quantum mechanical models in statistical mechanics,
atomic and nuclear physics [8]. In general, the determination of supersymmetric partners
originates singular as well as nonsingular potentials. Although, in principle, the main interest
was attracted by the latter ones, the singular Hamiltonians soon proved to be relevant also.
For example, singular Hamiltonians are related to the supersymmetry breaking process
[9, 10], and to the existence of negative energy states in some supersymmetric systems
(double well potentials) [10, 11].

Until now, most discussions about singular Hamiltonians have been concerned with
three-dimensional potentials with rotational symmetry. Therefore, after separation of
variables, the relevant coordinate has a radial character, the interval [0,+∞) being its
domain. In those cases a centrifugal potentialν(ν + 1)/r2 naturally arises, which is
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responsible for the singularity. Many papers have been devoted to studying the solutions
when such a term is present. However, here we will address the problem of singularities in
its more general form, i.e. given a nonsingular HamiltonianH with a singular partnerHδ,
the spectra ofH andHδ have nothing in common, at least for the bound states. Therefore,
even if the spectrum of the initialH is known, it is of no help in computing the spectrum
of its partnerHδ. In this paper we show how to handle this situation for any singularHδ
obtained by means of factorization.

We present the results for the simplest case, the one-dimensional harmonic oscillator, but
the key ideas can be applied to the other relevant cases listed in [3]. The main result coming
from our study is the following: the eigenvalues and eigenvectors of the singular potentials
arising from the factorization method applied to the oscillator can be straightforwardly
related to the potential described by the same oscillator plus an infinite barrier placed at the
singularity point. Therefore, what we have achieved is: (1) to compute the spectrum and
the eigenfunctions for the singular HamiltoniansHδ, and (2) to find an adequate partner
HamiltonianH for eachHδ, so that the coupleH,Hδ becomes isospectral.

The paper is organized as follows: in section 2 we present the solution of the
aforementioned quantum mechanical problem, a harmonic oscillator plus an infinite barrier
potential. Section 3 is devoted to a close analysis of the factorization, but taking care
mainly of the singular cases. Two different factorizations that generate singular potentials
are presented there and discussed in detail. Some final conclusions put an end to this paper.

2. The harmonic oscillator plus an infinite barrier

In this section we shall deal with the time-independent one-dimensional Schrödinger
equation for the harmonic oscillator potential plus an infinite barrier. Although this problem
cannot be solved analytically, it allows for a simple treatment that give us some qualitative
features as well as an arbitrary degree of accuracy for their solutions. The eigenvalue
equation takes the usual form

Hψ(z) ≡
(
− h̄

2

2m

d2

dz2
+ V (z)

)
ψ(z) = Eψ(z) (2.1)

with the following potential

V (z) =
{
kz2/2 x > B
∞ x < B

B ∈ R. (2.2)

We can eliminate some of the parameters that appear by making the following substitutions

ω =
√
k

m
x =

√
2ωm

h̄
z ε = − E

h̄ω
(2.3)

ψ(z) = y(x) b =
√

2ωm

h̄
B. (2.4)

Hence the Schrödinger equation (2.1) is rewritten as

d2y(x)

dx2
− v(x)y(x) = εy(x) (2.5)

v(x) =
{
x2/4 x > b
∞ x < b.

(2.6)
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Therefore, the eigenfunctions have their support on the interval [b,+∞), where they satisfy
the equation

d2y(x)

dx2
−
(
x2

4
+ ε

)
y(x) = 0. (2.7)

Physically, for these wavefunctions to be meaningful they have to comply with two extra
requirements:

(i) y(x) must be square integrable;
(ii) y(x) must be continuous onR, i.e. y(x)→ 0 whenx → b+.
Now, we shall determine such eigenfunctions together with their corresponding

eigenvalues. Recall that (2.7) is one of the standard forms of the differential equation giving
rise to theparabolic cylinder functions(see [12, p 686]) which include, as a particular case,
the Hermite functions. The the most suitable form of the general solution of (2.7) for our
present purposes is a linear combination of the so-called ‘standard solutions’U(ε, x) and
V (ε, x) (which in their turn can be expressed in terms of Whittaker functions). The power
series expansion for such functions is the following [12, pp 686–7]:

U(ε, x) =
√
πe−x

2/4

2
ε
2+ 1

40( 3
4 + ε

2)

{
1+

(
ε + 1

2

)
x2

2!
+
(
ε + 1

2

)(
ε + 5

2

)
x4

4!
+ · · ·

}

−
√
πe−x

2/4

2
ε
2− 1

40( 1
4 + ε

2)

{
x +

(
ε + 3

2

)
x3

3!
+
(
ε + 3

2

)(
ε + 7

2

)
x5

5!
+ · · ·

}
(2.8)

V (ε, x) =
√
π tan[( 1

4 + ε
2)π ]e−x

2/4

2
ε
2+ 1

40( 3
4 + ε

2)0(
1
2 − ε)

{
1+

(
ε + 1

2

)
x2

2!
+
(
ε + 1

2

)(
ε + 5

2

)
x4

4!
+ · · ·

}

+
√
π cot[( 1

4 + ε
2)π ]e−x

2/4

2
ε
2− 1

40( 1
4 + ε

2)0(
1
2 − ε)

{x + · · ·}. (2.9)

In our context, the key property of these functions is their asymptotic behaviour for
x →+∞ andx � |ε|:

U(ε, x) ∼ e−x
2/4

xε+1/2

{
1− (ε +

1
2)(ε + 3

2)

2x2
+ · · ·

}

V (ε, x) ∼
√

2/πe+x
2/4

x−ε+1/2

{
1+ (ε −

1
2)(ε − 3

2)

2x2
+ · · ·

}
.

(2.10)

Note thatV (ε, x) diverges forx → +∞. As we are interested in a solution for the
wavefunctiony(x) bounded in that limit, we must discardV (ε, x) and keep only the other
independent solutionU(ε, x).

The unnormalized solution of the Schrödinger equations (2.5) and (2.6) is obtained from
the above discussion of (2.7), valid forx > b, and taking the value zero forx < b,

y(x) =
{
U(ε, x) x > b
0 x < b.

(2.11)

This gives the answer to the first requirement (i). Since this wavefunction must also be
continuous (but not necessarily its first derivative) at the discontinuity of the potential, we
must have

U(ε, b) = 0 (2.12)
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for the second condition (ii) to be satisfied. Therefore, for every fixed value ofb the zeros
of equation (2.12) provide a discrete ensemble of solutionsεn(b), n = 0, 1, 2, . . . , that,
taking into account the relation (2.3) betweenε and the energyE, give us the energy levels
of this problemEn(b). Let us now consider the simplest cases.

Case 1.If we takeb = 0, from (2.12) and (2.8) we have

U(ε, 0) =
√
π

2
ε
2+ 1

40( 3
4 + ε

2)
= 0. (2.13)

The solutions of this equation are the singularities of the gamma function in the denominator,
that is

3

4
+ εn

2
= −n n = 0, 1, 2, . . . (2.14)

and taking into account (2.3), we obtain the following energy spectrum

En = −h̄ωεn = h̄ω(2n+ 1+ 1
2) n = 0, 1, 2, . . . . (2.15)

Note that we recover only the odd energy levels of the harmonic oscillator, corresponding
to the odd wavefunctions (those which are null at the origin).

Case 2.Another simple situation is obtained when we consider the limiting caseb→−∞,
in order to recover the spectrum of the harmonic oscillator in the whole real line. In this
case, we have to carefully analyse the limit limb→−∞ U(ε, b). Hence, let us write (2.8) in
terms of confluent hypergeometric functions [12]

U(ε, x) =
√
πe−x

2/4

2
ε
2+ 1

40( 3
4 + ε

2)
1F1

(
ε

2
+ 1

4
; 1

2
; x

2

2

)
− x

√
πe−x

2/4

2
ε
2− 1

40( 1
4 + ε

2)
1F1

(
ε

2
+ 3

4
; 3

2
; x

2

2

)
.

(2.16)

Now, we take into account the asymptotic behaviour of the function1F1(a; c; z) for z real
andz→+∞ (see for example [13, p 278] or [12, p 508]):

1F1(a; c; z) ∼ 0(c)

0(a)

ez

zc−a

{
1+ (1− a)(c − a)

1!z
+ · · ·

}
.

Using this result in (2.16), we have forb→−∞

U(ε, b) ∼ π21−ε

|b|1/2−ε
e|b|

2/4

0( 1
4 + ε

2)0(
3
4 + ε

2)
. (2.17)

Therefore, the solutions of equation (2.12) are in this case the singularities of the two gamma
functions that appear in the denominator of (2.17), that is

En = −h̄ωεn = h̄ω(n+ 1
2) n = 0, 1, 2, . . . (2.18)

which is the complete spectrum of the harmonic oscillator, as expected.

In the two extreme cases that we considered before, the spectra that appear are equally
spaced: one unit in (2.18) and two units in (2.15). For other values ofb the situation is
more complicated, and a numerical approximation of what is happening can be seen in
figure 1. The interpretation of this figure is the following: whenb takes the value−∞,
the eigenvalues of the energy are equidistant in one unit; asb approaches zero, the energy
levels change accordingly in a continuous form, but are no longer equidistant; forb = 0
the energy levels are again equally spaced, but by two units; finally, asb takes increasingly
positive values, the levels continue to grow, as well as the separation between them. The
exact analytic form of those levelsEn(b) = −h̄ωεn(b) as a function ofb cannot be simply
obtained from (2.12).



Factorization method and singular Hamiltonians 4119

Figure 1. Energy levels of the oscillator with infinite barrier atb.

3. Factorization method for the oscillator

Let us now turn our attention towards the application of the factorization method to the
oscillator. In that respect, we shall take [5] as a reference for the cases to follow. In
that paper, limited to values of a parameter for which the new potentials are free from
singularities, the one-parametric Abraham–Moses family of potentials [14] was derived.
Our purpose here is to prove that the singular cases ignored in [5] can also be solved,
establishing a relationship with the analysis carried out in the previous section.

3.1. First factorization: singular and nonsingular potentials

Going back to the notation used in section 2, the factorization of equation (2.7) is
accomplished if we look for the most general functionα(x) such that

Hy =
(
−d2y

dx2
+ x

2

4

)
y ≡

[(
d

dx
+ α

)(
− d

dx
+ α

)
+K

]
y = −εy (3.1)

whereK is a constant. Thus,α(x) must satisfy the Riccati equation

dα

dx
+ α2+K − x

2

4
= 0. (3.2)

As is well known such types of Ricatti equations are essentially equivalent to stationary
Schr̈odinger equations, in this particular case with potentialx2/4 and eigenvalueK (see for
example [15, p 333], or the chapter on the WKB method in [16]). We shall fix our attention
on the two specific values forK considered in [5], any other can be dealt along the same
lines [17].

First, let us takeK = − 1
2. For this choice a particular solution of (3.2) isα(x) = x/2,

corresponding to the usual lowering and raising operatorsa, a†. From here, the general
solution can be immediately obtained:

αδ(x) = x

2
+ δe−x

2/2

1+ δ ∫ x0 e−t2/2 dt
δ ∈ R. (3.3)
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If we call aδ anda†δ to the factor operators in (3.1)

aδ = d

dx
+ αδ(x) = d

dx
+ x

2
+ δe−x

2/2

1+ δ ∫ x0 e−t2/2 dt
(3.4)

a
†
δ = −

d

dx
+ αδ(x) = − d

dx
+ x

2
+ δe−x

2/2

1+ δ ∫ x0 e−t2/2 dt
(3.5)

equation (3.1) can be rewritten as

Hy(x) = (aδa†δ − 1
2)y(x) = −εy(x). (3.6)

Note thata, a† are recovered just by taking the valueδ = 0. If we consider the product of
the operatorsaδ anda†δ in the reverse order, what we find is a new HamiltonianHδ defined
by

Hδ ≡ a†δaδ −
1

2
= − d2

dx2
− α′ + α2− 1

2
(3.7)

and whose explicit form is

Hδ = − d2

dx2
+ Vδ(x) = − d2

dx2
+ x

2

4
− 1+ 2δxe−x

2/2

1+ δ ∫ x0 e−t2/2 dt
+ 2δ2e−x

2

[1+ δ ∫ x0 e−t2/2 dt ]2
.

(3.8)

This one-parametric class of HamiltoniansHδ may have singularities depending on the
existence of solutions for the equation

1+ δ
∫ x

0
e−t

2/2 dt ≡ 1+ δ
√
π

2
erf

(
x√
2

)
= 0. (3.9)

Because of the properties of the error function, (3.9) has no solution if the parameterδ

is such that|δ| < √2/π . Those are the nonsingular cases; for other real values ofδ the
HamiltonianHδ is singular. The typical form of the nonsingular potentialsVδ(x) can be
seen in [18]. Some illustrative cases for singular potentials are shown in figure 2.

The spectrum of the HamiltoniansH,Hδ are closely linked for any value ofδ.
From (3.6) and (3.7) it is clear that the following relation holds

Hδa
†
δ = a†δH (3.10)

Figure 2. Singular potentialVδ(x) for δ = 0.798 (full), δ = 1 (light), andδ = 1000 (broken).
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as well as its Hermitian conjugate

Haδ = aδHδ. (3.11)

Relations (3.10) and (3.11) imply that ifψ(x) is an eigenstate ofH (Hδ) with eigenvalue
λ, thena†δψ(x) (aδψ(x)) will be an eigenstate ofHδ (H ) having the same eigenvalue.

This is a purely algebraic relationship that does not guarantee that ifa
†
δ acts on the

states of the Hilbert space associated withH , the images will belong to the Hilbert space
of Hδ. In other words, it does not take into account important details such as the presence
of singularities or the boundary conditions. These topics have been considered in [5] for
nonsingular potentials (|δ| < √2/π ), and the results can be summarized as follows.

(1) If ψ is an eigenfunction ofH that is square integrable on the whole real line, then
the eigenfunctiona†δψ of Hδ is also inL2(R).

(2) Reciprocally, ifφ is an eigenfunction ofHδ in L2(R), thenaδφ is eigenfunction ofH
also inL2(R). The equationaδφ = 0 determines the square integrable ground state ofHδ.
The HamiltoniansH andHδ are isospectral except for the ground state ofHδ corresponding
to the eigenvalue− 1

2.
The singular cases not touched in [5] will be our main concern from now on. First of

all, note that if we are in the singular domain (|δ| > √2/π ), then for every fixed value of
δ there is exactly one finite value ofx solution of (3.9), let us call itxδ. The behaviour of
the singular potential in a small neigbourhood of the singularityxδ is

Vδ(x) ≈ 2

(x − xδ)2 . (3.12)

Physically this implies that if a particle is initially to the r.h.s. of the singularityx > xδ,
then it is going to be confined to that region in the future, because the probability of going
through the barrier towards the left ofxδ is null (see [19, 7, p 359]). In conclusion the two
regionsx > xδ and x < xδ are physically disconnected so that the eigenfunctions for the
singular potentials must be computed independently for each region. In the following we
shall restrict ourselves to the r.h.s.x > xδ, but obviously similar considerations apply to the
l.h.s. The eigenfunctions describing acceptable physical states in this region must satisfy

(a) Hδφ(x) = −εφ(x) x > xδ
(b) φ(x) ∈ L2([xδ,+∞))
(c) φ(x)→ 0 if x → x+δ .

(3.13)

We can think thatφ(x) is defined on the whole real lineR assumingφ(x) = 0 for x < xδ.
From the above discussion it is clear that ifψ(x) is a (square integrable) eigenfunction

of the oscillator Hamiltonian, when we take a valueδ corresponding to a singular potential,
the wavefunctiona+δ ψ(x) will not satisfy the previous conditions, mainly because of(c).
Thus, the spectrum of the singular HamiltoniansHδ have nothing to do with the oscillator
one. However, we shall show next that the singularHδ are directly related to the harmonic
oscillator plus an infinite barrier of section 2.

3.2. The singular potentials in depth

In order to prove the connection between the eigenvalue equations (2.5), (2.6) and (3.13),
note that in the region [b,+∞) the first one has the same differential expression as for
the oscillator potential as can be seen in (2.7). Therefore, on that interval we can apply
the development of the previous section; in particular, for any singularHδ the connections
between the eigenfunctions derived from (3.10) and (3.11) are still valid.
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Now, the eigenfunctions for the oscillator plus a barrier set at the pointb corresponding
to energyEn are given by (2.11) and (2.12), and henceforth will be denoted by{y(b)n (x)}+∞n=0.
Thus,

y(b)n (x) =
{
U(εn(b), x) x > b
0 x 6 b.

(3.14)

If we act on these eigenfunctions with an operatora
†
δ (3.5) that presents a singularity atxδ,

we obtain

a
†
δy
(b)
n (x) =


[
− d

dx
+ x

2
+ δe−x

2/2

1+ δ ∫ x0 e−t2/2 dt

]
U(εn(b), x) x > b

0 x < b.

(3.15)

This is an eigenfunction ofHδ corresponding to the same eigenvalue. However, we must
now deal with the problems related to its boundary behaviour.

First, the resulting function (3.15) may have a singularity atxδ unless at this point
there is a zero ofU(εn(b), x). This fact can be guaranteed if we take preciselyb = xδ,
the solution of (3.9). Therefore, we are connecting the harmonic oscillator potential plus a
barrier atb with a singular potential whose singularity is set at the same pointb. The value
of δ satisfying this condition will be referred to asδ(b). Once we have fixed such a value
δ(b), we can write the action of the creation operator (that we will denote hereaftera

†
δ(b))

on the eigenfunctionsy(b)n (x) asf (b)n (x) := a†δ(b)y(b)n (x).
This choice ofδ(b) will assure thatf (b)n (x) is square integrable, but a second important

point to be verified is whether the functionsf (b)n (x) are really continuous atx = b, as one
would expect for a physical wavefunction. This fact is easily checked, because using (2.12)
the local behaviour off (b)n (x) for x > b is given by a Taylor series

U(εn(b), x) = µn(x − b)+ ρn(x − b)2+ · · ·
and therefore[
− d

dx
+ x

2
+ e−x

2/2∫ x
b

e−t2/2 dt

]
U(εn(b), x) ≈

[
− d

dx
+ x

2
+ 1

(x − b)
]
(µn(x − b)+ · · ·)

≈ bµn−2ρn
2

(x − b)+ · · · .

However, if we act withaδ(b) on this result, bear in mind thatH = aδ(b)a
†
δ(b) − 1

2, we
conclude thatbµn − 2ρn = 0. Hence, near the singularity we have,

f (b)n (x) ≈ κ(x − b)2+ · · ·
and the eigenfunctions have a good behaviour in the limitx → b+.

Finally, observe that the whole set of eigenfunctions and eigenvalues ofHδ(b) are
precisely those already mentioned:

f (b)n (x) = a†δ(b)y(b)n (x) λ(b)n = −εn(b) n = 0, 1, 2, . . . .

The completeness of this set is assured by the fact that the state annihilated by the operator
aδ(b) is

f̂
(b)

0 (x) =

K0
e−x

2/4∫ x
b

e−t2/2 dt
x > b

0 < b

(3.16)
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which has a singularity atx = b, and therefore cannot be an admissible wavefunction for
the problem under study.

3.3. Second type of factorization and new singular potentials

We considered before a class of factorizations of the oscillator coming from the expression
H = aa† − 1

2 in the notation of [5], but in the same way there is another symmetric
factorization starting fromH = a†a + 1

2 corresponding toK = 1
2 in terms of (3.1). The

latter was not taken into account in [5] probably because of the appearence of singular
potentials. As we are dealing just with those singular cases, it seems quite natural to
explore it under our viewpoint. Therefore, let us write the harmonic oscillator Hamiltonian
factorized in the form

Hy =
(
−d2y

dx2
+ x

2

4

)
y ≡

[(
− d

dx
+ β

)(
d

dx
+ β

)
+ 1

2

]
y = −εy. (3.17)

The general solution forβγ (x) turns out to be

βγ (x) = x

2
+ γex

2/2

1− γ ∫ x0 et2/2 dt
γ ∈ R. (3.18)

Denoting byaγ anda†γ the new creation and annihilation operators

aγ = d

dx
+ βγ (x) = d

dx
+ x

2
+ γex

2/2

1− γ ∫ x0 et2/2 dt
(3.19)

a†γ = −
d

dx
+ βγ (x) = − d

dx
+ x

2
+ γex

2/2

1− γ ∫ x0 et2/2 dt
(3.20)

the equation (3.17) can be written as

Hy(x) = (a†γ aγ + 1
2)y(x) = −εy(x). (3.21)

We obtain a uniparametric family of new Hamiltonians by writing the product

Hγ ≡ aγ a†γ +
1

2
= − d2

dx2
+ β ′γ + β2

γ +
1

2
. (3.22)

The explicit form ofHγ is

Hγ = − d2

dx2
+ Vγ (x) = − d2

dx2
+ x

2

4
+ 1+ 2γ xex

2/2

1− γ ∫ x0 et2/2 dt
+ 2γ 2ex

2[
1− γ ∫ x0 et2/2 dt

]2 . (3.23)

An important detail that establishes a difference between this second factorization and
the first one is that now the potentialsVγ (x) always present a singularity, as long asγ 6= 0.
This is due to the fact that the equation∫ x

0
et

2/2 dt = 1

γ
(3.24)

always has a unique solutionxγ for every fixed non-null value ofγ . The behaviour of this
singular potential in a neigbourhood of the singularityxγ is alsoVγ (x) ≈ 2/(x − xγ )−2.
Some typical examples can be seen in figure 3.

Instead of the intertwining relations (3.10) and (3.11), we now have

Hγ aγ = aγH Ha†γ = a†γHγ . (3.25)
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Figure 3. Singular potentialVγ (x) for γ = −0.001 (full), γ = 1 (light), andγ = 100 (broken).

Therefore, ifψ is an eigenvector ofH with eigenvalueλ, thenaγψ is an eigenvector of
Hγ with eigenvalueλ. Let us consider the action of the operatoraγ on the functiony(b)n (x)
written in (3.14).

aγ y
(b)
n (x) =


[

d

dx
+ x

2
− ex

2/2∫ x
xγ

et2/2 dt

]
U(εn(b), x) x > b

0 x 6 b.

Following the same reasoning as that developed for the previous factorization, in order
for this function not to have a singularity atxγ we must takeb = xγ . The functions
aγ (b)y

(b)
n (x) are just the eigenfunctions ofHγ(b), with eigenvalues−εn(b), that constitute

the whole spectrum ofHγ(b).

4. Concluding remarks

Usually, the factorization method is applied to connect a regular Hamiltonian to another
regular one, or a singular to a singular one. Here we have shown with one simple example
how the regular to singular situation must be handled.

There is just one case where the singular potentials can be solved analytically, this is
when the barrier (or the singularity point) is set at the origin. Then, the symmetry conditions
allows us to solve the problem completely. This situation is particularly interesting from
the physical viewpoint, since thex variable can be interpreted as the radial coordinate in
a three-dimensional spherical problem, so thatx > 0. In such circumstances sections 2
and 3 provide us with two classes of singular potentials that are exactly solvable (note that
even in this case the singularity does not have a centrifugal character [20]). This variety
of new potentials can be of interest when one tries to reproduce phenomenological data by
adjusting the parameters that characterize the class of solvable potentials.

Finally we wish to point out that although in this work we have restricted ourselves to
the oscillator potential, the same arguments can be applied to any of the known factorizable
potentials, for instance Morse, Coulomb, etc. (Some work in this direction is in progress.)
Also, we have considered here just one singularity point, but it is obvious that, with slight
modifications, our method can be extended when more singular points appear, for instance
when the system is confined to a bounded interval ofR.
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